skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Prabhu, Raj"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Wearable sensors are beneficial for continuous health monitoring, movement analysis, rehabilitation, evaluation of human performance, and for fall detection. Wearable stretch sensors are increasingly being used for human movement monitoring. Additionally, falls are one of the leading causes of both fatal and nonfatal injuries in the workplace. The use of wearable technology in the workplace could be a successful solution for human movement monitoring and fall detection, especially for high fall-risk occupations. This paper provides an in-depth review of different wearable stretch sensors and summarizes the need for wearable technology in the field of ergonomics and the current wearable devices used for fall detection. Additionally, the paper proposes the use of soft-robotic-stretch (SRS) sensors for human movement monitoring and fall detection. This paper also recapitulates the findings of a series of five published manuscripts from ongoing research that are published as Parts I to V of “Closing the Wearable Gap” journal articles that discuss the design and development of a foot and ankle wearable device using SRS sensors that can be used for fall detection. The use of SRS sensors in fall detection, its current limitations, and challenges for adoption in human factors and ergonomics are also discussed. 
    more » « less
  3. A novel wearable solution using soft robotic sensors (SRS) has been investigated to model foot-ankle kinematics during gait cycles. The capacitance of SRS related to foot-ankle basic movements was quantified during the gait movements of 20 participants on a flat surface as well as a cross-sloped surface. In order to evaluate the power of SRS in modeling foot-ankle kinematics, three-dimensional (3D) motion capture data was also collected for analyzing gait movement. Three different approaches were employed to quantify the relationship between the SRS and the 3D motion capture system, including multivariable linear regression, an artificial neural network (ANN), and a time-series long short-term memory (LSTM) network. Models were compared based on the root mean squared error (RMSE) of the prediction of the joint angle of the foot in the sagittal and frontal plane, collected from the motion capture system. There was not a significant difference between the error rates of the three different models. The ANN resulted in an average RMSE of 3.63, being slightly more successful in comparison to the average RMSE values of 3.94 and 3.98 resulting from multivariable linear regression and LSTM, respectively. The low error rate of the models revealed the high performance of SRS in capturing foot-ankle kinematics during the human gait cycle. 
    more » « less
  4. The purpose of this study was to use 3D motion capture and stretchable soft robotic sensors (SRS) to collect foot-ankle movement on participants performing walking gait cycles on flat and sloped surfaces. The primary aim was to assess differences between 3D motion capture and a new SRS-based wearable solution. Given the complex nature of using a linear solution to accurately quantify the movement of triaxial joints during a dynamic gait movement, 20 participants performing multiple walking trials were measured. The participant gait data was then upscaled (for the SRS), time-aligned (based on right heel strikes), and smoothed using filtering methods. A multivariate linear model was developed to assess goodness-of-fit based on mean absolute error (MAE; 1.54), root mean square error (RMSE; 1.96), and absolute R2 (R2; 0.854). Two and three SRS combinations were evaluated to determine if similar fit scores could be achieved using fewer sensors. Inversion (based on MAE and RMSE) and plantar flexion (based on R2) sensor removal provided second-best fit scores. Given that the scores indicate a high level of fit, with further development, an SRS-based wearable solution has the potential to measure motion during gait- based tasks with the accuracy of a 3D motion capture system. 
    more » « less